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Sensitive determination of nonlinear properties

of Berea sandstone at low strains
Eric Smith and James A. TenCate

Los Alamos National Laboratory, Los Alamos, New Mexico

Abstract. Resonant response functions of a sand-
stone bar, measured at strain magnitudes between 1078
and 10~% at several temperatures, are used to extract
Young’s modulus and loss tangent as functions of fre-
quency and driving force. Expressing the distorted
shape of nonlinear resonances in terms of shifts in the
resonant frequency and @ enables correlation analy-
sis of these functions against components of the strain
response function. Resonance shifts are found to be
strongly correlated with somewhat complicated func-
tions of strain, but only weakly with frequency or phase
of the response. Decomposing the data along contours
of constant strain magnitude yields the quantitative
scaling of resonance shifts with strain, which shows a
superposition of both conventional and necessarily hys-
teretic nonlinear sources. No statistically significant
temperature dependence is found in the coefficients of
the fits.

Introduction

Rocks are known to be much more nonlinear than the
crystal grains they comprise. The physical state condi-
tions on which this nonlinearity depends, however, are
not yet well understood. Young’s mode resonance ex-
periments on highly nonlinear materials, like sandstone,
can yield extremely precise measurements of shifts in
material properties (shifts of Young’s modulus result in
shifts of resonance frequency; shifts in loss tangent re-
sult in shifts of resonant quality factor ).) The high res-
olution of a set of such measurements, presented here,
places constraints on both models and mechanisms of
nonlinearity to unprecedented low strains.

The classical Landau theory of nonlinear elasticity
[Landau and Lifschitz, 1959] predicts a modulus shift
proportional to the square of dynamical strain mag-
nitude [McCall and Guyer, 1996}, and harmonic gen-
eration proportional to strain at linear and quadratic
orders. Reversible by construction, this theory predicts
no net energy loss, but the cascade of energy from lower
to higher harmonics results in a nonlinear attenuation
of the fundamental resembling a shift in 1/Q).

A description of non-conservative nonlinearity orig-
inating in hysteresis [McCall and Guyer, 1996, 1994]
has recently been added to the classical Landau theory.
The hysteretic mechanism is predicted (in its simplest
formulation) to lead to shifts of both resonant frequency
and @ proportional to the first power of strain magni-
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tude. A subset of the data analyzed in this paper (at a
single temperature) has already been argued [Guyer et
al., 19%9] to show this scaling for strains from 3 x 1072
to 107°.

It is important that neither Landau theory nor its
hysteretic extension implies a particular microphysical
origin for nonlinearity. Indeed, more structured distri-
butions than the simplest one in the hysteretic many-
element state space can reproduce all power-law scalings
of the Landau theory, from either conservative or lossy
elements. Thus, recovery of a Landau-scaling compo-
nent does not alone imply reversibility, and only the
need for hysteretic elements can be demonstrated from
a scaling component linear in strain.

A concern in applying the mesoscopic theory of hys-
teresis, at strains nearing 1078, is the difficulty of acti-
vating obvious candidate hysteretic elements such as in-
terlocking grain asperities, when total bar-end displace-
ments are at most tens to hundreds of nanometers. It
is thus necessary to consider the possibility that hys-
teresis is due to physico-chemical, and not mechanical,
stick-slip processes [Thompson and Robbins, 1990]. If
so, these might be thermally rather than acoustically ac-
tivated. To test this premise, resonance measurements
were made at temperatures from 35°C to 65°C . While
the temperature range is only ten percent of absolute,
it represents half of the practical range accessible in
rocks, between irreversible damage thresholds at freez-
ing (0°C), and the baking of interstitial clays (~70°C).

It was once believed that 107° was a lower bound on
the strain magnitudes at which nonlinear effects could
be seen [e.g., Gordon and Davis, 1968]. However, this is
not a true onset limit. Preliminary analysis has already
demonstrated a transition strain, around 107, between
a lower range dominated by strain-linear scaling, and a
range dominated by quadratic scaling at higher strains
[TenCate et al., 1998]. The analysis presented here
explains the transition, showing that both linear and
quadratic frequency shifts are present at all strains be-
tween 3 x 10™% and 107, with roughly constant co-
efficients. It also provides refined tests of whether the
material property shifts are sensitive only to strain mag-
nitude, to other strain components, or possibly to fre-
quency or phase.

Analysis of resonance data

The experiment, described in [TenCate and Shank-
land, 1997] and [Guyer et al., 1999], is to force the end
of a thin cylindrical bar of Berea sandstone with a se-
quence of constant-magnitude, CW tones (i.e., an in-
cremental sweep) passing through the fundamental lon-
gitudinal (Young’s-mode) resonance. Such sweeps are
taken at several different driving forces. The bar is 350
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Figure 1. Complex strains (solid lines), at twelve

drive voltages. Max(|¢|) ranges from 2.5 x 1077 — 8 x
10~7. Small deviations of solid lines from circles deter-
mine shifts in Q. Spiraling radials (dashed lines) show,
at fixed frequencies, how phase through resonance ad-
vances with increasing voltage.

mm long and approximately 24 mm in diameter. Force
is delivered by a PZT transducer epoxied between one
end of the bar and a brass backload, and checked to
be proportional to the AC driving voltage V with a
(highly linear) Plexiglas control sample of similar di-
mensions and acoustic properties. Acceleration is mea-
sured with a B&K 4374 accelerometer bonded to the
opposite end of the bar, and converted to displacement
using the known driving frequency. An EG&G lock-in
amplifier is used to measure both in-phase and quadra-
ture components during a sweep.

The complex strain response function

Previous analyses [Johnson et al., 1996] of resonance
nonlinearity have involved only the magnitude of the
strain response function, which shows peak-shift and
peak-bending reminiscent of a Duffing oscillator. In
this analysis the components of the measured bar-end
displacement will be expressed in terms of a compler
strain response function &, formed from the measured
in-phase and quadrature components. Its two degrees of
freedom can be inverted for effective resonance position
and quality at each frequency in a sweep. _

For an oscillatory driving voltage V () = VRe (e*?),
the displacement dlnar (t) will be defined as

Jlbar/lbar = Re (66“”) (1)
where Iy, is the static bar length. The complex strain
then has (approximately) the form of a simple pole [Sku-
drzyk, 1981]:

' 14 Wref
e=R _— 2
othery [w — (wg + twr) @
where the collection of terms wret/wyVzer s a calibration
factor. Rother 1s a relative response function of the form
1 + (small terms), representing the complicated struc-
ture assoclated with other resonances of the bar. In
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Figure 2. Instantaneous real resonance frequency
wr, obtained by subtracting linear fits from é=!. Corre-
sponding strain maxima range from 6 x 1078 -8 x 10~7.
Drive voltages were stepped up to maximum and then
back down to check for repeatability. The shift at max-
imum strain is & 0.1%.

processing these data, the average of many curves at
the lowest strains measured is used to deduce Rother,
which is then divided from all higher-strain curves be-
fore analysis for nonlinearities begins. The resulting
(complex) conditioned response (¢/Rother) = €, for a
set of data at a single temperature, is plotted in Fig. 1.

Frequency-dependent resonance shifts

The deviations from circularity in Fig. 1 are nearly
invisible; €71 = (Viet/Vwrer) (w — (wr + iwy)), the in-
verse, is (visually) indistinguishable from a straight line.
However, subtraction of a linear term, fit from the low-
and high- frequency asymptotes, extracts the variable
wr+iwr as aresidual. wg is shown in Fig. 2; wy (shown
in Fig. 3), is proportional to 1/Q.
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Figure 3. Instantaneous imaginary resonance fre-

quency wy, for same curves as in Fig. 2. wr/2wr = @
of the resonator.
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Figure 4. Fits of imaginary (dashed) and absolute
(dotted) components of strain to the frequency shift for
a sweep with Max(|¢|) ~ 2 x 107, Baseline and scale
factor of template function are fit to data in a least-
squares sense.

It has been proposed that frequency shifts are purely
a function of the strain magnitude. This may be tested
by correlating the curves above with components of the
(complex) strain response function. Fig. 4 shows fits
of the real frequency shift at |¢] ~ 2 x 1077 to |¢|
and Im (¢), corresponding to the absolute and out-of-
phase components of strain, respectively. The prefer-
ence for out-of-phase component at this strain is clear,
and differs from the minimal hysteretic result [McCall
and Guyer, 1994].

At higher strains (~ 8 x 1077), a similar compari-
son shows a transition toward dependence only on the
magnitude of strain. The interplay of these two depen-
dencies leads to frequency shifts which are a somewhat
complicated function of strain. There appears to be no
asymmetry at any strain level, which would indicate an
intrinsic dependence on frequency or phase of the reso-
nant system.

Comparisons with earlier work

Constant strain sectioning. Based on an assumption
that frequency shift depends only on magnitude of
strain, an alternative method of data reduction was de-
veloped in [Guyer et al., 1999]. Resonant response was
extracted along contours of (w, V) with constant strain
magnitude. Applying this method to the data of Fig. 2,
and subtracting the mean of the lowest-strain curve as a
linear baseline, the residual frequency shifts on contours
between |e| ~ 6 x 1078 and |¢| ~ 4 x 107 are shown
in Fig. 5. The significant non-flat structure along each
contour shows that |¢| is not the unique variable deter-
mining strain, as expected from Fig. 4.

Shift of material properties. It is clear from Fig. 5, how-
ever, that the fine differences between strain compo-
nents are small corrections to the fits to either |e| or
Im (), so the mean values of contours in Fig. 5 deter-
mine the leading scaling of frequency shift with dynamic
strain magnitude. This is expressed as a fractional shift
in Young’s modulus, §E/E, in Fig. 6. Similar analy-
sis of the loss tangent produces curves of 1/Q increas-
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ing with larger strain, and proportional to the curve of
Fig. 6 by a factor of roughly —1/9.

All temperature data from 35°C to 65°C are plotted
in Fig. 6. The statistical scatter, between sets of over-
lapping strain range at a single temperature, is larger
than any systematic differences that can be discerned
between temperatures.

A second-order polynomial fit of the modulus shift to
strain magnitude, averaged over all sets, produces the
main result of this note:

oE _ le| 1( le| )"‘
— ~—-18x10"* =
E 8x 10 {2.8 107 T3\28x 107

3)
An equivalent expression for frequency shift,
é
}f- = —328|¢| — 5.8 x 10%|¢|?, (4)
0

may be compared with inferred sound speed shift §c/cq
from pulse-mode measurements of harmonic genera-
tion [TenCate et al., 1996]. The modulus (hence sound
speed) shifts in that work were associated with the mag-
nitudes of second and third harmonic generation. The
second-harmonic coefficient, 8 = 400, leads to no reso-
nant frequency shift in dynamic averages [McCall and
Guyer, 1994]. It does, however, generate harmonics
with magnitude linear in the strain and should lead to
apparent shift in the quality of the fundamental with
the same scaling as the linear coefficient in Eq. (4). It
is interesting, therefore, that the two coefficients also
have very close values.

The third-harmonic coefficient, (3/2)d ~ 3 x 108,
leads to both third harmonic generation and shift of
the fundamental resonance, proportional to the square
of dynamic strain magnitude. It is not possible to com-
pare literally the coefficient from harmonic generation
(a short-length, first-order perturbation experiment),
with that for resonance shift, which results from effec-
tively high-order iteration of the perturbative results,
as carried out in [VanDenAbeele, 1996]. However, in
this range of parameters, ¢ is dominant and the order
of magnitude of the parameters in both experiments
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Figure 5. Real part of the residual resonance fre-
quency, cut along contours of from |¢| ~ 6 x 1078 to
le| ~ 4 x 1077,
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Figure 6. Relative shift in Young’s modulus along

contours of constant strain magnitude, measured at
temperatures from 35°C to 65°C.

should be the same. Again, the experimental results
show reasonable agreement for similar samples (within
a factor of 5), for the two very different measurement
methods.

The strain-linear coefficient for small dynamic strains
in Eq. (4) is also in rough agreement with the linear
coefficient (~ 1000), attributed to hysteresis in large-
strain quasi-static experiments [Guyer et al., 1999]. Fi-
nally, the scaling of Eq. (3) exchanges dominance from
linear to quadratic contributions at |¢| ~ 0.28 x 107, in
rough agreement (factor of 3 too large) with the analysis
of [TenCate et al., 1998]. It is this onset of quadratic
scaling that coincides with the traditionally expected
lower bound for observation of nonlinear effects.

Conclusions

Nonlinear shifts of Young’s modulus and loss tan-
gent have been observed in Berea sandstone at strains
as low as 3 x 107%. Both strain-linear and strain-
quadratic components to the frequency shift are found,
with roughly constant coefficients, across this range. No
statistically significant temperature dependence is ob-
served in the coefficients, over a temperature range rep-
resenting half that accessible between lower and upper
damage thresholds. A thermal activation mechanism
for hysteresis, expected to scale as exp (—FEchar/kT),
where Fopar is a characteristic activation energy, k is
Boltzmann’s constant and 7" is temperature, should not
maintain a constant rate over this temperature range.
This result seems to indicate that all instantaneous non-
linear mechanisms are mechanically, and not thermally,
activated.

While the quadratic component of observed scaling
is consistent with classical nonlinearity, the linear com-
ponent requires some form of hysteretic nonlinear ele-
ments. More complex models than the minimal case
of uniform hysteresis are possible, so it is interesting
that the relations of modulus and loss-tangent shifts
are different from the minimal predictions. The imag-
inary frequency shift, like the real shift, has a com-
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ponent quadratic in strain, and the linear component
of the imaginary resonance shift is proportional to the
real component by a factor of roughly —1/9, where the
model of [McCall and Guyer, 1994] predicts a propor-
tionality of —1/2. Whether more information about
underlying mechanism can be gleaned from these dif-
ferences remains a topic for future work.
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